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ABSTRACT

We construct a nonlinear kineticequation and prove that itiswell-adapted to describ

generalmultidimensional scalarconservation laws. In particularwe prove that itiswell-posec

uniformly in e - the microscopic scale.Wc also show that the proposed kineticequation i.,

equipped with a family of kineticentropy functions- analogous to Boltzmann's microscopic

H-function, such that they recover Krushkov-type entropy inequality on the macroscopic

scale.Finally,we prove by both - BV compactness arguments in the multidimensional case

and by compensated compactness arguments in the one-dimensional case, that the local

density of kineticparticlesadmits a 'continuum' limit,as itconverges strongly with c _ 0 to

the unique entropy solution of the corresponding conservation law.
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1. _TRODUCTION

Consider the scalar multi-dimenslonal conservation law

(1.1) _[u(x,t)] + ___ [A,(u(x,t))] = O, (z,t)eR_ffi x R +, A,(.)eC 1,
i=1

with given initial conditions u(z, t = 0) = u0(z). We are concerned here with a Boltzmann-

like kinetic equation which describes (1.1), as its microscopic scale, _ > 0, tends to zero.

To this end we introduce a scalar function, f_(x, v, t), which can be viewed as a microscopic

description for the density of particles located at (x, t)eR d x Rt+ with speed veR. Starting

with given initial distribution, f,(x, v, 0), our kinetic model evolves according to

(1.2a) IS,+ 0=]/,(x, t) = l[xu.cf.,)Cv)- f,(x, v,t)].

Equation (1.2a) tells us that the particles are transported along

d O
a=-- "'() -- it,'.(.),

i=1

and that their collisions are governed by the nonlinear kernel on the right. Here,

(1.2b) u,(z, t)= t)d ,

denotes the local density of particles at a given (x, t) location, and the 'equilibrium function',

X_,(=.0(v), is the signature of u,(z,t), i.e.,

sgnu, if(u-v)v>0,(1.2c) X_(v) = 0, if (u- v)v < 0

The classical example of a kinetic model is of course the Boltzmann equation [1]. Equation

(1.2) is closely related to the B.G.K. model of Boltzmann equation. Existence theory for

Boltzmann equation and its simplified B.G.K. model can be found in [6], [11], respectively.

In both cases, however, the question of convergence of the macroscopic moments to weak

solutions of compressible Euler equations is still an open problem. (Consult [3] regarding

an affirmative answer to this convergence question in the case of strong solutions.) In this

paper we restrict our attention to the simpler scalar case, and we show that the proposed

kinetic equation (1.2) is well adapted to describe strong as well as weak solutions of (1.1) as

c,LO.
The paper is organized as follows. In Section 2 we show that the kinetic equation (1.2) is

wen-posed in L°°(R+; LI(R_ × R_)). Next, we borrow our terminology from the framework

of Boltzmann's kinetic equation. The microscopic scale, c, in (1.2) can be viewed as the



mean free path. In Section 3 we prove that the continuum or 'fluid' limit of the local density

of particles, litres0 u,(x, t) is the unique entropy solution of (1.1). A kinetic construction of

conservative solutions was carried out by Oiga and Miyakawa [7]. In fact their construction

is nothing but a fractional splitting solution of our kinetic equation (1.2), namely, a kinetic

approximation is constructed by a succession of srnan time steps, in which we first transport

and then project the particles distribution according to (1.2). Here we improve on [7] by

identifying the underlying kinetic equation which corresponds to (1.1). It is also shown here

that this kinetic equation is equipped with ( a family of) kinetic entropy functions which play

an analogous role to Boltzmann's H-function. In particular, Krushkov entropy inequality

[8], [9] is recovered in the 'fluid' limit c _ 0.

In Section 4 we revisit the question of the 'fluid' limit in the case of one-dimensional

kinetic model. Here we show that the compensated compactness theory of Tartar [13] can

be adapted as an alternative approach for providing an af_mative answer to the question

of macroscopic convergence. The compensated compactness arguments allow us to pass

to the continuum limit with minimal L 1 C1L _ information about the distribution function,

f,, which may still oscillate around the 'equilibrium function' X_,. Finally, in Section 5, we

indicate the extension of our results to the inhomogeneous case, in the presence of a (possibly

stiff) source term.

2. THE KINETIC EQUATION IS WELL-POSED

Let us rewrite (1.2) in the form

(2.1) 0 . _f, +-_f, q-a(v) l f, = 1 ,,

separating between its linear part on the left and its nonlinear kernel on the right. By

Duhammel's principle, (2.1) admits the following equivalent integral representation

(2.2) f,(x,v,t) e-_f,(x ta(v),v,O)+ l f_= -- -- e(r-t)/'Xu,(x_(t_r)a(v),r)(v)dr.
g o

The question of existence of a kinetic solution of (1.2) is now transformed into that of a fixed

point solution for the P,.HS of (2.2). Fixing T, T > 0, we seek such a fixed point solution

in L°°([0'T]; LI(R d x P_)). To this end, we let f, and #, be two different solutions of

(1.2a) with corresponding densities u,( z, t) = f_ f ,( z, v, t )dv and w,( z, t) = f_ 9,( _, v, t )dv.

By (2.2), their difference does not exceed

Ilf,(x, v, t) - ff,(x, v, t)llL1Cn_×n.) _<e-t/'llf,(x, v, O) - g,(x, v, 0) [IL_(P_×R.)+

if,+-
g =0



Using the properties of the signature function, X, we therefore conclude

(2.3)
llf/=, _,,_)- g/=,_,t)llv(_x_) _<_-'/"llf/=, _,,o)- g/=, _, 0)IlL_(R_x_)+

-I-(i -- e-t/') max llf/_, v,_-)- g/_, _,,_')IIL'(R_-×R.).
0<_'</

The inequality (2.3) shows that the fixed point iterations

(2.4) 1 I

L"+'(+,v,t) = e-'/'f.(+- ta(v),,,,O)+ _-.,,.[=o0--')]. , ,-e X.p(__(t__).(_),_)tvjar,

are contracted (with a contraction factor of 1 - e -t/") to a fixed-solution solution of (2.2).

Moreover, by (2.3) this kinetic solution is unique and continuously dependent on the initial-

data, for

(2.5) ma_ IIf/=,,_,t)- g/=,,,, t)llL,(_x_) < Ill/=,,,, o) - g/=,,,,O)IIL'(_,,R.).0<t<T

We summarize this by stating

THEOREM 2.1. The kinetic model (1._) is well-posed in L°°(R+; LI(R_× R_)). Moreover,

its solution operator is nonezpansive in this topology, i.e., (_.5) holds.

We close this section with several remarks.

1. L_-bound. To see that the solution operator associated with the kinetic model (1.2) is

uniformly bounded, we use (2.2), obtaining

IIf,(-,_,t)ll,,_(,,.,)< e-'/'llf/',,',O)ll_-(R.,)+

(2.6) + (1 -- e-tIt) max IIx,,.(..,-)(,,)ll_-(,a)<
0<_-</

< _-'/'llf/.,,,,o)llL-(_.,)+ 1-e-tl'.

2. Finite speed of propagation. We assume that initially, f,(x,-, 0) has a compact support in

R_. Let us first show that f,(z,., t) remains compactly supported. Indeed, by (2.6), f,(., v,t)

and hence u,(-, t) are uniformly bounded, and therefore the contributions of X_(...)(v) on the

RHS of (2.2) are supported by ve[-u_, u_], where u_ = Ilu/_, t)llL®(,_xRt)"Consequently,
f,(z,., t) given in (2.2) remains compactly supported for all t > 0, with support contained

in suppJ,(z,.,O)U[-u_,u_]. (Note that after an initial kinetic layer of order O(e), the

contribution of the initial data in (2.2) decays exponentially fast. Thereafter, f,(z,., _) is in

fact 'essentially' supported in [-uoo, uoo]).

3



With this in mind we now turn to prove the finite spatial speed of propagation. We shall

need a refined version of estimate (2.6). To this end we first observe that according to (2.2)

- which we rewrite as

t _--t/c[f__-oeC _)_X,-,.C--C,-',:)oO-'_.,_)("')dr i
Y,(m,v,t)=e-t/'f(x-ta(v),v,O)+(1-e-'/')[ f_=oeO.-O/,dr '

f,(m, v, t) is given by a convex combination of f,(m - ta(v), v, 0) and X,_.(,-(,-,.),(,,),,-)(v). By

jensen's inequality, therefore, we have for any convex function, U(f),

Z'1 eC,._,)/W(×,,.C,_C,_,._o0,1.,.)(v))d.,."(2.7) U(f,(z,v,t)) < e-'/*U(f,(z - ta(v),v,O)) + -i =0

In particular, consider the case U(f) -- Ifl p. If we let a_ denote the maximal speed of

propagation,

(2.8) aoo= {_xla,(v)l , v e suppvf,(x,-,t)},
I

and Bit] = [-r,r] a C R_, is the ball of radius r, then (2.7) implies

llf,(',v,t)llL*cBtrD< e-'/'llf_(',v,0)llL*c_tr+,=._+

+

Integrating the last inequality w.r.t, v we find

f_ IIS..(-,v, t)llE.c_t_l)dv_ _-'/*f_ ITS,,(,,,,o)llL.c.,t,.+,o®j)a'o+
(2.9)

+

If, on the one hand, we take the p-root of both sides and let p T oo, we obtain

f_'=oeC_-O/*ll×".C',_Cv)ll'*c_t_+C'-')"**J)a_"

(1 - e -'/') max [ Ill,(., v, ",)llL_cBt,+C,-,-)=._l)dv.

(2.10) Ill.(=,,-,,t)ll_**c_,t,-j,,,_)-<max{llf,(_:,v,0)llL**c_t.+,,_..l,,_),O,

in agreement with what we had before, consult (2.6). If on the other hand, we set p = 1 in

(2.9), we find that the function F(-r),

J,,Ill&,v,-,-)llL-c_t,+C,__.),,=Ddv,0 _<r _<t,F(r)

Satisfies

F(t) < e-t/*F(O)+(i e -t/*) max F(_'),
-- O<-r<t

and hence F(t) < F(O). Thus, we have a finite speed of propagation (< aoo) of the uniform

bound on the moments

(2.11) f_ IIS,(x,v, t)llL.c_t_l#v_<f_ IIf_(_,v, O)llL_(B[r+ta**])dv.

4



In particular, the local density is uniformly bounded by the initial data,

(2.12) II_'(_,t)IIL_(R._xRt)_ f_ IIf,(_,v,O)ll_-(R_)dv.

In summary, we conclude that for initial data f,(z, v, O)eL I(R_; L=(R_)) which are compactly

supported in R_, the corresponding kinetic solution f_(z, v, t) remains compactly supported

in R_ and is uniformly bounded in LI(R_; L_(Ra_)), due to a finite speed of propagation

_< a_, given by

a_ = {ma_la,(v)l I Ivl_ Ilh(x,v, 0)ll_l(_.;_-(_)) , v_ suppJ_(x,v,0)}.

3. Monotonicity. The signature function X_(v) is an increasing function of u. Consequently,

the fixed-point iterations (2.4) show that

(2.13) f,(x,v,O)>g,(z,v,O)===>f,(x,v,t)>g,(x,v,t), for all (x,v),

namely, the solution operator associated with the kinetic equation (1.2) is monotone. In

particular, if we compare a given kinetic solution (compactly supported in R, d × R_) with

the steady state solutions Xc,,,_a.(v), i.e., if initially we have

Xk(V) < f,(:_,v,O) or f,(x,v,O) < XK(v),(2.14a)

we obtain

(2.14b) x,(v) <_y.(.,v,t) or 1'.(.,v,t) <_xK(v),

in agreement with (2.6). And, since the kinetic solution operator is also conservative, the

Crandall-Tartar lemma [5] implies the Ll-contraction stated in (2.5). In fact, at this point

we can state a little more, namely,

4. Ll-contraction revisited. Taking into account the finite-speed of propagation, we can

repeat - along the lines of Remark 2, a localized version of estimate (2.3) which sharpens

the Ll-contraction estimate (2.5) into

(2.15) IlY,(x,",t)-g,(_,_,t)ll_'(_t,l×_) < llf,(_,v,O)-g,(=,_',O)ll_,(_t,+,:..l×R.).

5. The various estimates quoted above indicate that after an initial layer of order O(_), the

kinetic solution asymptotes to the 'equilibrium function', X_(_,t)(v), where - as will be shown

in the next section, u(x, t) is the unique entropy solution of (1.1).
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3. KINETIC ENTROPY FUNCTIONS

Our analysis of the kinetic model (1.2) hinges on the construction of certain kinetic

entropy functions. A kinetic entropy function in this context is a function, H(f), such that

as in Boltzmann's H-Theorem, any solution of (1.2) obeys the additional entropy inequality

Z[Ot + a(v)-cq=]H(f,)dv < O.(3.1)

We shall construct a family of such kinetic entropy functions depending on extra fixed

parameter k, k real. To this end, we integrate (1.2a) against sgn(f, - Xk) over the phase

space. Invoking a standard regularization argument of the signum function we obtain

Z 1Zsgn(f'-x')(f'-x'_')dv"(3.2) [at + a(v) . 0,]l f, - zkldv ---- ---g

Noting that the expression on the right is upper-bounded by

-_ sgn(f, - x_)(f, - X,,,)dv = - Ill, - xkl + sgn(f, - Xk)(X_ - X,,,)]dv <

<_-l[Z IA- ×.ldv- lu.- kl],

we arrive at

THEOREM a.1. For"'Wsot_,tionf,,L'*(n,+;Ll(n d-× n_)) of the kinetic model (1._), the

following inequality holds

(3.3) Z[Dt + a(v) . O,]]f, - xkldv < -1[ Z If,- xklav - kl].

Now, the RHS of (3.3) is clearly nonpositive for

c ---_lZ(f,--zk)dvl=-- Iu"-kl"

Consequently, Theorem 3.1 yields

COROLLARY 3.2. For any k, k real, the following functions

(3.5) H(f,) - Hk(f,) = if,- Xkl

are kinetic entropy functions, i.e., we have

(3.6) Z[O, + a(v) . O=]lf, - x,,ld_ _ o.



Let us point out that our kinetic entropy functions, Hk(fc), are intimately related to the

entropy functions used by Krushkov in [8]. Indeed, as e _ 0 we expect (and later on prove)

that f_ approaches X-. With this in mind, the inequality (3.6) turns into Krushkov's entropy

inequality [8]

(3.7) 0 k I + _ [sgn(u- k)(Ai(u)- Ai(k))] <_ O, for any real k.
_1_ - ,=1

To make this last point more precise, we shall need several lemmata. We start with

LEMMA 3.3. Let fceL_°(R+; LI(R,,; L°O(R_))) be the solution of the kinetic equation (1._),

subject to given initial data f_(x, v, O) which are compactly supported in R_. Assume that

u.(z, t) = f_ /.(z, v, t)dv satisfies

(3.8) u,(x,O) --_ Uo(X) in LI(Ra_),

and

--. Lloc(R t , La(R_)).(3.9) a subsequence of u,(x,t) u(z,t) in oo +.

Lloo(R, , (a_)) toThen the sequence u,(x, t) converges strongly in oo +" L 1 u(x, t), which is the

unique entropy solution of the conservation law (1.1), i.e., (3.7) holds.

Note: If we take k > Ilullz..c,_×to.m_,then the entropy inequality (3.7) yields

_ + _ A,(_) >_o,
i=1

i.e., u(x,t) is a supersolution of (1.1); similarise, taking k < -Ilul[r.**(R__x[o,r]) shows that

u(z, t) is a subsolution of (1.1). Hence, (3.7) implies that u(z, t) solves the conservation law

(1.1).

To prove Lemma 3.3 we first prepare

LEMMA 3.4. Let/,eL°°(R+; La(R_; L°_(R_))) be the solution of the kinetic equation (1.2),

subject to given initial data f,(x, v, O) which are compactly supported in R_. Then for any

k, k real, we have

[ If. - Xkl dv -I u. - kl----* 0 in n_o_(R + x Ra_),(3.10)
Jv _10

(3.ii) f_a(v)lfc- x_Idv- sgn(=,- k)f_a(v)(i,- x_)d.-:_.o0 in L_o_(R + x Rd).



PROOF. The vanishing limit in (3.10) follows from the inequality (3.3), for

(3.12)

f0"LL0 < [ If, - xkldv- lu,- klldzdt

To prove (3.11) we write

/0"/.Lt< -¢ Ot + a(v)OxliY. - x_ldvdzdt-----+ O.
clO

Z If.- x_ldv- lu.- kl

I" t

(3.13) = J_sgn(f,- X_)(/,- X,)_v-sgn(=.-k)Jo(/.- X,)dv= Jo(S.- X,)s@)d_.

Here, s(v) -- s(v; x, t) is the characteristic function given by

s(v) = sgn(f_(x, v, t) -- Xk(V)) -- sgn(u.(x, t) -- k).

Now, since s(v) is supported on the set

W = {vlsgn(f. - Xk) _ sgn(u, -- k)},

and since

sgn(fc -- Zk) " s(v) =_ 2, for v_V,

we can rewrite (3.13) in the following form,

(3.14) -.-Lif, - X'I dv -I u. i kl ..-L,v if, Xklsgn(f, - Xt<)s(V) dv = 2.L,,r.._if, ' Xkl dv.
: =

In view of (3.10), the identity (3.14) implies

(3.15) [ If, - x,<ldv--->o in LIo:(R+ x̀ R_=).
.#v_V .iO

We conclude by noting that

L a(-)iY, x_Id--sgn(_,-_) La(v)(y. ×k)dv = -- ....

= f_ a(v)(f. - x,.),(v)d,_= 2/_<vo@)lS.- x_Idv_<_o00f_.vIS.- x,ld_.(3.16)

and (3.11) follows from (3.16) together with (3.i5). ............ []

Equipped with Lemma 3.4 we turn to the

PROOF (of Lemma 3.3). By our assumption (3.8), there is a strongly convergent subse-

quence (still denoted by) u,(z, t) _ u(x, t). Utilizing (3.10) we obtain

J_If: - xkldv = I_:- kl = I_- kl.(3.17)

....



Here the overbar denotes the weak *L_-limit of the indicated quantities after extraction of

appropriate subsequences, if necessary. (We note that the existence of the weak .L _ limits

here and below are justified, since in view of (2.11), f,(z, v, t) remains compactly supported

in/_ and uniformly bounded w.r.t, e in LX(R,,;L_(Ra_))).

By (1.2) we have

.f. - x,,. = -_[o, + _(v) .o.]L---, o in _",
_,].o

Z a,(v)lL - ×_ld_,= sgn(=.- k) f_ a,(,,)(L - x_)d_,=

(3.19)

Hence, in view of (3.17) and (3.19), the weak limit of (3.6) recovers the entropy inequality

(3.20) 0 _l + _2 [sgn(,_-k)(A,(,_)- A,(k))l _<0.
g/l'_ - i=1

The above argument shows that the strong limit of any subsequence of u. satisfies the

entropy inequality (3.2O). Since the entropy solution of (1.1) subject to initial conditions

(3.8) is unique, we conclude that lim_10 u,(z, t) = u(x, t) as asserted. []

We now turn to show that the continuum 'fluid' limit of the kinetic equation (1.2) exists

and is governed by the conservation law (1.1). By Lemma 3.3 it remains to show that

Llo¢(R t ;LI(R_a)). In this context there is (by now) a standardu,(z,t) is precompact in _ +

procedure, e.g., [4], which is based on uniform Bounded Variation (BV) estimate for each

fixed t, coupled with equicontinuity (typically, Lipschitz cQntinuity), in time. This brings us

to our next lemma which states

LEMMA 3.5. Assume that

]lf.(x,v,O)l[BV(R_xLt(1%)) = sup [. 1 . f_Z [f,(x + Ax, v,O)- f_(x,v,O)ldvdx]
I_wl#0 IAzl

is bounded uniformly in e. Then the corresponding kinetic solution, f,(z, v, t), satisfies

(3.21) IIL(_,v, t)llBv(a_×v(R.)) -<[IL(_,v,0)llBv(a_xV(R.)).

= sgn(u-k).(Zai(v)f, dv-Zai(v)xkdv )

= sgn(u- k)(A,(u) - Ai(k)).

and hence by (3.9)

Z ai(v)f, dv = Z ai(v)x,,, dv = Ai(u,)= Ai(u).(3.18)

This together with (3.11) gives



Moreover, if f,(x, v,O)eLl(R_; BV(Ra_)) are compactly supported in P_, then we also have

for tl, t2 > O,

(3.22) I1_(_,t2)- _.(x, tx)[l_(_) __It2- t_l- a,_" IIA(z,v, O)ll.v(_._xv(_)>.

PROOF. Since the kinetic model (1.2) is translation invarlant in spatial variables, we can

apply the Ll-contraction (2.5) to f_(x,v,_.) with g_ --- f_(z + Az, v,t) and obtain (3.21).

Integration of the kinetic equation (1.2) over the phase space yields

_-_u,(z, t) + _ )f.(z, v, t)dv = O,
i=1

and since/,(x,v,O)eLl(Rv; BV(Ra_)) C LI(R_; L_(Ra_)) is compactly supported in Rv, we

may use the finite speed of propagation bound in Section 2 to conclude

_t2 _ O fai(v)f.(z,v,.r),lL_(pq,)d.r <- = H _ -Ilu_(x,h) _,(_,tl)llL_(n_') =,1-=

f t_ a_ IIf_(_,v, r)ll_v(R.,×L,(_.,dr.
=tl

Also, since f ,( z, v, O)eL ' (P_; B V ( R_) ) C B V( R_ × L l(Rv)), the last inequality together with

(3.21) imply the Lipschitz continuity in time, (3.22), which completes the proof. []

Remark. In the course of proving Lemma 3.3, consult (3.18), we established only the weak

: *L_::convergence of-the spatiaI fluxes. However, equipped with the BV Setup of Lemma 3.5

we are able to derive strong convergence. Indeed, one may utilize the integral representation

(2.2) to conclude that in this case we have

f_(x,v,t) _ Xu(_,t)(v) strongly in LI([0,T] × R_a × R_).

This together with the finite speed of propagation imply

IIf_ ai(v)f,(x,v,t)- A_(_,(_,t))llLlcto,mn,_) <_

<_aoo. IIA(z,v,t)- x_,o(v)llv(to,mn.,×R.)---' 0,
el0

in contrast to the weak convergence stated in (3.18). We shall omit the details (consult

.............. Theorem 3_7 below), and we turn now to summarize our results by stating the following.

THEOREM 3.6. Suppose f,(x, v, 0)eLa(R_; L _ f'l L_(Ra-)) such that

= [ f_(x,v,O)dv _ Uo(X) in LI(Ra_).(3.23) Ue(x, O )
.Iv

10



Then the local density of the corresponding kinetic solution, u, =_ f_ f,(z, v, t)dv, converges

to the unique entropy solution of (1.1), i.e., we have

(3.24) ]. L(_, v,t)d_ -_ _(_,t) in L°°([O, T]; LI ( R_) ),

and the entropy inequahty (3.7) holds.

PROOF. We begin by first assuming that L(z,v, 0) is compactly supported in LI(P_;

BV(R_)), uniformly w.r.t. ¢. By Theorem 2.1 (consult (2.12)), u,(x,t) are uniformly

bounded, and by (3.21) they have uniformly bounded spatial variation, i.e.,

][u.(_,t)H_v(m)_<[]L(_,v,t)ll_v(mxL,(_.))_<Oo_st.

Hence {u,(z,t),0 _< _ < T} is a bounded set in LINBV(R d) and by HeUy's theorem it

Lloc(R,). By (3.22), [[u,(z,t)l]r.l(_ ) is Lipschitz continuous inis therefore precompact in 1 d

time, and by Cantor diagonalization process of passing to further subsequence if necessary,

(3.24) follows. By Lemma 3.3 this completes the convergence proof for compactly supported

BV initial data. The general case is justified by standard cutoff and BV-regularization of

arbitrary LI[ "] L°_(R d) initial data, consult [4]. []

We continue with a couple of remarks.

1. The kinetic initial layer. We observe that Lemma 3.5 supplies us with an e-uniform bound

on the spatial variation on the microscopic scale, (3.21). The temporal variation (Lipschitz

continuity), however, is uniformly bounded only on the macroscopic scale, (3.22). In general,

one cannot control the temporal variation in the microscopic scale (uniformly in ¢), unless

we can prevent the possibility of a kinetic initial layer in (1.2). To this end we proceed by

2. Preparing the kinetic initial data. In order to avoid a kinetic initial layer, we have to

bound of, uniformly in e and time, in particular at t = 0. Taking into account the uni-

form bound (in ¢ and t) of the spatial variation, (3.21), it remains to bound the nonlinear

'interaction' kernel on the right of (1.2), 1;(X_,, - f,). In particular, we therefore need

---_ 0.(3.25) IlL(z,_,o) - ×..(.,o)(.)[I-(___×_.)._o

Since by our assumption (3.23) we already have that

II - = I1_/=)- ,.,o(=)11_.,(_.)_ 0,

the requirement (3.25) boils down to

(3.26) --_0.ILL(=,,-,,o)- X,,o(=)(_,)llL_(n_x_)._o
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Thus, given the initial conditions st(z, t = 0) = uo(z), we have to prepare the kinetic initial

data, f_(z, v, 0), such that (3.28) holds. If we prepare the kinetic initial data in such a

manner, then we can derive explicit bounds (uniform in time) on the error .between the
*

kinetic solution and the exact entropy solution, as told by

THEOREM 3.7. (Error bound). We consider kinetic inital data, f,(z, v, 0)eLI(R_; BV(Ra,))

which are compactly supported in P_. Suppose we prepare the kinetic initial data so that

-----_ 0.(3.27) IlfJx,-,0) - x._c=)(v)llL,c,_×,_) .,o

Then the following error bound holds

_ ---_ O.(3.28) < 2_a_llf.(_,v,O)llv(_;Bv(_.))+ 211fJ_,_,0)- x_0(.)(v)llL,(_.×_).,o

Consequently, we have

(3.29) f,(x,v,t) --4 X,,(,,O(v) strongly in L_(R+;LI(R_ × R,,)).

Note. Preparing the kinetic initial data according to (3.27) is a strengthened version of our

assumption (3.23). In this case, the kinetic distribution converges strongly and uniformIy

in time, to the equilibrium state X_, as expected. Also, all the weak limits indicated in

the proofs of Lemma 3.3 and 3.4 are in fact strong ones; in particular we now have strong

convergence of the corresponding fluxes

f_ a,(v)f, dv _ A,(u) in L_(R+;LI(R_ × R_)),

compared with (3.18).

PROOF. Since the kinetic model (1.2) is translation invariant in time, we can apply the
• . : :=

L'-contraction (2:5) to f,(x,v,t) with g, -- f,(z,v,t + At) and obtain

t0 z c3
(3.30) II_/f.( ,', t)ll_'c,_×,.)< I1_/_(_,', t = 0)ll_c_._×,_)-

The kinetic equation (1.2a) enables us to upper bound the RHS of (3.30), namely,

(3.31)
1

< II[a(_)•0_]/.(_,_,t = 0)],.,(,_×,_)+ _llx..(_,,=o)-/,( x, v, t = 0)[IL_(_×i%).

12



/

The first term on the right of (3.31) does not exceed

H[a(v)- O.]L(x, v, t = O)HL,(_×R,) _<a_l[f,(x, v, O)HL,(R,mv(_));

the second term is less than

1HX,,,(::,t=o)(V ) - f,(z,v,g = 0)[[L,(_xm ) < 2Hf,(z,v, 0 ) - X,0(v)llL,(p_×a, ).

Substituting the last two estimates into (3.31) we end up with

O

(3.32) < _a_[If_(_,v,O)Hv(_;Bv(_))+ 2/If,(_, v,o)- x_o(.)(_,)l[_,(___).

Finally, we use the kinetic equation (1.2a) once more, obtaining

llf,(m, v,_) - X,,.(::,O(v)I]L,(_×R.) _<

0
(3.33) _< ell_-.f,(_, _,,¢)lln*(R__x_.)+ 41[a(_)"0=]f/x, v, ¢)IIv(_×_)

_ 2_a_ llf,(_,", 0)IIv(_;_V(_)) + 211f,(_,v,0) -- X,,o(=)(")II_(_xR,),

and (3.28) follows.

By Theorem 3.6 we also have that u, - u and consequently that X_, - X,, converges

strongly and uniformly in time to zero, and by adding this to (3.28) we obtain (3.29) as

asserted. []

We note in passing that the Ll-contraction and the related BV estimates stated in Section

2 and Lemma 3.5 are no__A.tidentical with the usual LLcontraction statements concerning

viscosity regularizations of entropy solutions of (1.1). In fact, at any fixed time level, we

have

> L IL(/, - g,)dvl = I1=,-
i i

Ill, gdlL_(a=xR,) W,,[[Lt(Rd_) •

By (3.29), however, the two statements coincide in the limit as _ _ 0,

[ Ix,,- X,,[ dvdz = I1=-/IS, t/J[I Lt (R_),i ---4

Jz tl/

and we recover the Ll-contraction (and the corresponding BV estimates) for entropy solutions

of the conservation law (1.1).

We close this section by calling attention to a rather unusual result in the theory kinetic

equations. Namely, if u(z, _) is a smooth solution of the conservation law (1.1), then the

13



equilibrium function X,(,,t)(v) is an Ll-solution of the corresponding kinetic equation (1.2).

That is

THEOREM 3.8 (exact solutions). If u(x,t)eC n LI([0, T] x R d) satisfies the conservation

law (1.1), then X,,(x.t)(v) is a kinetic solution (I.e) on n_a x [0,T].

Note. Theorem 3.8 is no longer valid when u(z, t) contains shock discontinuities. After the

formation of shock waves, the corresponding kinetic solution has a "multivalued" form, e.g.,

X=d=,t)(v) + X[_=(=,t),=,(=,t)l(v), as in the transport collapse method of Brenier [2].

PROOF. We have to show that f_(x,v,t) = X,,(=,t)(v) satisfies the kinetic equation (1.2a),

i.e., that for any C_ test function ¢(z, v, t)

/
(3.34) j0 + a(,,) •O.]¢(x,,,,t)dxd,,dt= O.

Since the integration in R,, is compactly supported (on [-u_, u_,]), it is enough to consider

successively ¢(m, v, t) = ¢(m, t)-{1, v, v',...}, in which case (3.34) amounts to the equivalent

conservation laws

(3.35) 0t _ "'"
/=1

Indeed, (3.35) are the usual entropy equalities satisfied by continuous solutions of (1.1),

but violating (for p > 1) the Rankine-Hugonlot conditions after the formation of shock

discontinuities.

4. MICROSCOPIC OSCILLATIONS AND COMPENSATED COMPACTNESS

In this section we deal with the one-dimensional scalar conservation law

(4.1) Ou OA(u)
0---[+ Oz o.

The corresponding underlying kinetic equation reads

0 _ _[X,,.C,.,)(_,) - f,(:_, _,, t)],(4.2) IN+a(,.,) ]f,(_,v,t)= 1 a(.) _= X(.),

and we raise the question of convergence of the local 'particles density', ue(z, t) = f_ f,(z, v, t)

dr, towards the entropy solution, u(z, t), of (4.1). In this section we give an affirmative answer

to this question, which is independent of compactness arguments, i.e., the BV estimates used

in Lemma 3.4. Instead, we appeal to compensated compactness arguments, specifically, we

employ Tartar's div-curl lemma [13]. In this context, it is instructive to see how oscillations

t
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which persist on the microscopic scale are 'compensated' in a manner which enables us to

pass to the limit on the macroscopic scale. We have

THEOREM 4.1. Let feEL_(n+, ; LI(R.; L1N L°°(R.))) be the solution of the kinetic equa-

tion (4.e). Then u,(z,t) = .f_ f,(x, v,t)dv converges strongly in L[_:(R, x n+),p < co, to the

unique entropy solution of the nonlinear conservation law (4.1).

Remark. The conservation law (4.1) is nonlinear in the sense that there exists no interval

on which the flux A(u) is linear, i.e., A'(u) _ Const.

PROOF. Integration of (4.2) over the phase space yields

O,u, + O, ]_ a(v)f, dv = 0.(4.3a)

The corresponding entropy inequality reads

(4.3b) Ot f_ If, - xkldv + G f_ a(v)lf, - xkldv < O.

Since by (2.11) the left-hand side of (4.3b) lies in W -1'°°, Murat's lemma [10],[13] implies

that the negative measure on the right of (4.35) lies in a compact set of H_ (R= x R +). Hence

we can apply the div-curl lemma [13] to the left-hand sides of (4.3a) and (4.3b), which gives

u, f,,lfe-- xkIdv-- f,a(v)f.dv" f,,If.-- Xk[ dv=

(4.4)

We recall that the overbar denotes the weak *L_-limit of the indicated quantities after

extraction of appropriate subsequences, if necessary. Following [12], we can rewrite (4.4) in

the equivalent form

(4.5) (u, - _,) . _a(v)[fe - xk[dv = _ If,- xk[dv" (_a(v)f, dv- foa(v)fcdv).

Using (3.10) and (3.11), the last equality is further simplified into

(,0) (/o(o)..-/
We now examine (4.6) at an arbitrary fixed location (x,t); with k = _(x,t) we find after

little rearrangement

(4.7) [ue - _,1" ([ a(v)xkdv - [ a(v) f , dv) O.
,Jr

15



Of course,by (4.2)

L - x,,. = -c[o, + a(v)o.]L--* o in z)',
elo

hence

(4.8)

Also, we recall with k = _c(x, t) we have

(4.9) a(v)x_d_ = A(_c).

Inserting (4.8) and (4.9) into (4.7) we find

]u, - _,l . (A(_,) - -A(u,)) = O.

f_ a(v)f, dv = f_ a(v)x,.dv = A_-_;

This implies that

(4.10) A(u,f= A(g,),

for otherwise, lu, - _c](x, t) = 0, which in turn leads again to (4.10). Taking the weak limit

of (4.2), we obtain with the help of (4.8) and (4.10),

N,_--.+ A(_.) = o.

Thus, (a subsequence of) u,(x, t) converges to a weak solution of the conservati,;n law (4.1).

Moreover, in view of the nonlinearity of A(u), equality (4.10) implies that u,(x,t) converge

strongly in L[oc(R _ x R+), 1 _< p < oo, consult Tartar [13]. Using this fact together with

Lemma 3.3 we conclude that u, converges strongly in L[oc(R_ x R +), p < oo, to the unique

entropy solution of (4.1), as asserted. []

5. CONSERVATION LAWS WITH A SOURCE TERM

In this section we extend the above results to inhomogeneous scalar conservation laws

(5.1) 0 ' 0
_[u(z,t)] + _ _,[Ai(u(x't))] = S(x,t,u), (x,t)ene= x n +,

i=l

where S(x,t, .) is an L°°(nd x n+; C') sourceterm satisfying S(x,t, O) = O.

The corresponding kinetic model equation reads

V
(5.2) [o,+a(,,).o.]f.(_,,,,t)= _[x..c.,o()-f.(x,,,,t)]+s'(_,t,v)k(_,,,,t),

and is augmented with the constitutive relations (1.2b), (1.2c).
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A unique kinetic solution for (5.2) can be constructed, as before, by Banach fixed point

iterations which yield

THEOREM 5.1. The kinetic model (5._), (1._b-c) is well-posed in L°°(R+; La(Rd= x R_)).

Moreover, if f, and g, are two different inhomogeneous kinetic solutions of (5.1), and if we

let S_(t) denote

then we have

$,Zos'(')_ "r'_ 0)-g,(_, v, 0)IIL_(R_,×R.).(5.4) max IIf,(x,v,t)-g,(x,v,t)llL_(l_×r_) <_e = "lIJ,_ ,v,
0<t<T

We shall only indicate the proof of the L°°(R+; LI(Ra_ × R_) stability stated in (5.4). The

difference between the kinetic solutions f,-ge (with corresponding local densities, u,(x, t) =

Iv f,(z, v, t)dv and we(x, t) = f_ ge(z, v, t)dv) satisfies

[0,+ a(v). O.](fe- g,) = _[(X,.(,.,_(v)- Xw.(-.0(_)) (:e ge)] + S'(z,t,v)(fe ge).

Multiplying this by sgn(fe - g,) and integrating over R_ and R_ (in this order), we obtain

d llfe(x, v, t) S" (t) . Ilfe(x, v, t) - g,(z, v, t)llL,(_×n.),g,(x, v, t) llnl(e4×R.) <

and (5.4) follows. []

We conclude with several remarks concerning the entropy inequality.

The corresponding inhomogeneous kinetic entropy inequality now reads

f..[O, + a(v) . O,llfo - xkldv < f_ S'(m, t, v)lfe - xkldv.(5.5)

Moreover, by arguing along the lines of the stability estimate (5.4) we find that for BV(Rd_)

source terms we have

life(x, v, T)IImv(R.'×L'(P_.))< ef'_°s'(')dtllf,(x, v, 0)[IBV(R_d×Lq_))+

(5.6)

ft_ f r S'(_)d_+ e_=, • r_xllS'(_,t,v)llBv(R,.)dt" IIf_(_,v,O)IIL'(R'.×R.).
0 v

This allows us to keep the convergence statement of Theorem 3.6,

f_f,(z,v,t)dv----,u(x,t), in L°°([O,T],L'(Rd)),
el0

in the inhomogeneous case (5.2). In view of (5.5), we are also able to recover the macroscopic

'continuum limit' entropy inequality for the above limit u = u(x, t), which in this case

amounts to

0 k I + _ [sgn(u- k)(Ai(u)- Ai(k))] <
_1_ - __-_

< sgn(u- k)[S(x,t,u)- S(x,t,k)], for any real k.

17



References

[1] L. Boltzmann, Vorlesungen uber Gas theorie, Liepzig, 1886.

[2] Y. Brenier, "Averaged multivaried solutions for scalar conservation laws," SIAM J.

Numer. Anal. _1 (1986), pp. 1013-1037.

[3] R. Caflisch, "The fluid dynamic limit of the nonlinear Boltzmann equation," Comm.

Pure AppI. Math. 33 (1980), pp. 651-666.

[4] M. Crandall and A. Majda, "Monotone difference approximations for scalar conservation

laws," Math. Comp. 3_ (1980), pp. 1-21.

[5]

[6]

[7]

[8]

M. Crandall and L. Tartar, "Some relations between non-expansive and order preserving

mappings," Proc. Amer. Math. Soc. 78, 3 (1980), pp. 385-390.

R. DiPerna and P. L. Lions, "On the Cauchy problem for Boltzmann equations: Global

existence and weak stability," Ann. of Math. (1989).

Y. Giga and T. Miyakawa, "A kinetic construction of global solutions of first order

quasilinear equations," Duke Math. Journal 50 (1983), pp. 505-515.

S. N. Krushkov, "First order quasilinear equations in se,reral independent variables,"

Math. USSR Sb. 10 (1970), pp. 217-243.

[9]

[lO]

P. D. Lax, "Hyperbolic systems of conservation laws and the mathematical theory of

shock waves," SIAM Regional Conference Series in Applied Mathematics # 11.

F. Murat, "Compacit6 per compensation," Ann. Scuola Norm. Sup. Disa Sci. Math. 5

(1978), pp. 489-507 and 8 (1981), pp. 69-102.

[11] B. Perthame, "Global existence of solutions to the BGK model of Boltzmann equations,"

J. Diff. Eq. 81 (1989), pp. 191-205.

[12] E. Tadmor, "Semi-discrete approximations to nonlinear systems of conservation laws;

consistency and L_-stability imply convergence," ICASE Report No. 88-41, to appear

in Math. Comp.

[13] L. Tartar, "Compensated compactness and applications to partial differential equa-

tions," in "Research Notes in Mathematics," 39, Nonlinear Analysis and Mechanics,

Heriot-Watt Sympos., Vol. 4 (R. J. Knopps, ed.), Pittman Press, Boston, London,

1975, pp. 136-211.

18







NASA
Nal_l A_onauI_: S a_
5c_e _:_r_5Tf aTO_

1. Report No.

NASA CR- 181985

ICASE Report No. 90-11

4. Title and Subtitle

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

A KINETIC EQUATION WITH KINETIC ENTROPY FUNCTIONS

FOR SCALAR CONSERVATION LAWS

7. Author(s)

Benoit Perthame
Eitan Tadmor

9. Performing Organizaiion Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

January 1990

6. Performing Organization Code

8. Performing Organization Report No.

90-11

10. Work Unit No.

505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Ty_ ofReportandPeriodCoverod

Contractor Report

14. Sponsoring Agency Code

15. Supplementaw Notes

Langley Technical Monitor:

Richard W. Barnwell

Final Report

Submitted to

SIAM Journal on Applied

Mathematics

16. Abstract

We construct a nonlinear kinetic equatio_iand prove that it is well-adapted

to describe general multidimensional scalar conservation laws. In particular we

prove that it is well-posed uniformly in 5 - the microscopic scale We also show _

that the proposed kinetic equation is equipped with a family of kinetic entropy ";

functions - analogous to Boltzmann's microscopic H-function, such that they recov-

er Krushkov-type entropy inequality on the macroscopic scale. Finally, we prove

by both - BV compactness arguments in the one-dimensional case, that the local

density of kinetic particles admits a 'continuum' limit, as it converges strongly

with g + O to the unique entropy solution of the corresponding conservation law.

17. Key Words(SuggestedbyAu_or(s))

kinetic equation, entropy functions,

continuum limit, compensated compactness

19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

67 - Theoretical Mathematics

Unclassified - Unlimited

_. Security Cla_if. (of this page)

Unclassified

21. No. of pa_s _. Price

20 A02

NASA FORM 1626 OCT 86

NASA-Langley, 1990




